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We develop the exact energy spectrum for a two-temperature kinetic Ising spin chain and its dual reaction-
diffusion system with spatially alternating pair annihilation and creation rates. We also discuss the symmetries
of the system pseudo-Hamiltonian and their role in developing a general solution. The surprisingly simple form
for the eigenvalues leads to interesting physical consequences and to a possible numerical analysis of the
dynamical properties of the system.
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I. INTRODUCTION

Over the last three decades, an increasing number of
condensed-matter theorists are devoting their efforts to un-
derstanding complex collective behavior of far-from-
equilibrium systems using methods that range from easily
accessible computer simulations to sophisticated theoretical
studies. Although great progress has been made, a compre-
hensive theoretical framework is still lacking.

This paper presents the exact energy spectrum of two
closely related one-dimensional nonequilibrium models: a
kinetic Ising spin chain �KISC� with cells coupled alternately
to one of two temperature baths, with generalized Glauber
dynamics �1�, and its dual counterpart, a reaction-diffusion
system �RDS� with spatially alternating pair annihilation and
creation rates. Interest in these models is motivated by their
experimental applications. Multi-temperature spin systems
are fairly common: nuclear magnetic resonance in an exter-
nal magnetic field is an example; a lattice of nuclei in a solid
prepared at a finite spin temperature �2� is another. On the
other hand, the RDS model with spatially alternating annihi-
lation and creation rates is known to describe the dynamics
of photoexcited solitons in polymers �3�. Mobilia et al. pro-
posed an experimental realization of the RDS model with
alternating rates in compounds with alternating metal and
halogen atoms �MX chain compounds� using a laser with
spatially modulated power output �4�.

The two-temperature kinetic Ising model �KISC� was first
introduced by Rácz and Zia �5� who calculated exactly the
two-point correlation functions for the steady state. Using a
perturbation expansion of the master equation, Schmüser and
Schmittmann �2� calculated the first two corrections to the
equilibrium Boltzmann distribution. Mobilia et al. �4� found
an analytical solution for the full dynamics �magnetization,
particle density, and all correlation functions� of this non-
equilibrium spin chain and its related reaction-diffusion
model using a generating function approach. Time depen-
dence of the approach to the steady state for small systems
has been exhibited in recent work by Mazilu and Williams
�6�. Outstanding challenges include knowledge of the exact
energy spectrum of these models and a compact expression
for their steady states.

Our study brings us one step closer to achieving this goal.
Using the standard mapping �7� of reaction-diffusion models
onto integrable quantum chains, the RDS model can be ex-
pressed in a “free fermion” form by defining a quadratic
non-Hermitian “stochastic Hamiltonian” �4�. This operator
can be diagonalized as long as certain constraints are obeyed
�8�. In this paper, we derive the exact energy spectrum of this
pseudo-Hamiltonian. The methodology we use to extract the
spectrum also establishes means for numerical evaluation of
eigenstates which can be the basis of more complete system-
atic future studies of this model. The method can be gener-
alized to find the energy spectrum and the dynamical prop-
erties of other models such as reaction-diffusion models with
biased diffusion and dimer creation-annihilation or multi-
temperature kinetic systems.

Our paper is organized as follows: in Sec. II, we give an
overview of the models. Next �Sec. III�, we describe the
symmetries exhibited by the pseudo-Hamiltonian operator
and their role in the diagonalization process. In Sec. IV, fol-
lowing some standard technical steps �Jordan Wigner trans-
formation, discrete Fourier transform, and a generalized Bo-
goliubov transformation� we derive closed-form expressions
for the eigenvalues and a methodology for extracting the
eigenvectors. Section V presents a summary of our results,
physical implications of these results, and some possible
generalizations of this model.

II. OVERVIEW OF MODEL

Two equivalent one-dimensional models motivate the
work herein: the KISC and its associated RDS model. The
KISC model parallels the one-dimensional Ising model. We
postulate a lattice of N side-by-side cells, numbered
n=1,2 , . . . ,N, arranged in a ring such that cell n=N is con-
sidered adjacent to cell n=1. N is restricted to even values.
Each cell has a single degree of freedom with two possible
values: −1, which can be thought a cell occupied by a par-
ticle with spin down, and +1, describing a cell occupied by a
particle with spin up. Each cell interacts with its two nearest
neighbors, as well as being in contact with a heat bath at one
of two temperatures—Te for even-numbered cells and To for
odd-numbered cells. If Te�To the system cannot achieve
equilibrium: each heat bath tries to drive the system toward a
different equilibrium state. As a result, energy flows continu-
ously between the even cell sublattice and the odd. Configu-
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ration C �a list of the states of the N cells� changes into a
different configuration C� with generalized Glauber transi-
tion rates r�C→C��. Rate r is nonzero only if C and C�
differ in the spin of a single particle. The rate at which site n
has its spin flipped is given by

rn =
1

2
−

�n

4
dn�dn−1 + dn+1� , �1�

where the factor �n�0��n�1� is related to the temperature
of cell n by

�n = �tanh� 2

kBTe
� for n even

tanh� 2

kBTo
� for n odd,� �2�

kB is Boltzmann’s constant and dn is the state �+1 or −1� of
the nth cell. This rate equation prescribes a spin-flip rate for
a cell of 1/2 if cells to the left and right have opposite spins,
�1−�n� /2 if adjacent spins are the same and the same as that
of cell n, and �1+�n� /2 if adjacent spins are the same and
opposite that of cell n. The time scale is arbitrary.

The KISC model is mapped onto an equivalent reaction-
diffusion model with spatially alternating pair creation and
annihilation rates in the following way. A dual lattice of N
sites is established, in which a site in the dual lattice is as-
sociated with the boundary between two sites in the KISC
lattice. A pair of adjacent KISC spins with opposite signs is
identified with a particle in the dual lattice; adjacent spins
with the same sign are identified with the absence of a par-
ticle �a hole.� A spin flip in the KISC model translates into
either diffusion of particles on the dual lattice with equal
left-right rates or pair creation or annihilation with different
rates. Transition rates between configurations in the KISC
system become diffusion, pair creation and annihilation rates
in the RDS system, as shown in Fig. 1.

Time evolution of these systems is described by the mas-
ter equation expressing conservation of probability assuming
a continuous-time dynamics. The probability P�C , t� of find-
ing the system in configuration C at time t increases due to
transfer of probability into C from other configurations and
decreases as C passes probability into others, in such a way

that 	CP�C , t�=1 for all t. The evolution of probability
P�C , t� is described by transition rates r�C→C��, the prob-
ability per unit time that configuration C changes into a dif-
ferent configuration C�. The master equation is

dP�C,t�
dt

= 	
C��C


r�C� → C�P�C�,t� − r�C → C��P�C,t��

�3�

in which the first term on the right represents the gain in
probability of configuration C due to transitions from other
configurations, and the second represents losses due to C
transforming into other configurations.

We utilize Dirac notation to represent each configuration
as �C. From this we build a vector representation of a proba-
bilistic superposition of all possible configurations of a sys-
tem:

�P�t� = 	
C

P�C,t��C . �4�

The master equation can now be re-expressed in terms of this
vector as

d

dt
�P�t� = − H�P�t� , �5�

where the pseudo-Hamiltonian H is a 2N�2N matrix, with
matrix elements

�C��H�C = − r�C → C��, C� � C , �6�

�C�H�C = 	
C��C

r�C → C�� . �7�

A formal solution to Eq. �5� can be written as
�P�t�=e−Ht�P�0�. Our goal is to investigate the eigenvalues
of operator H in order to explain the system’s time depen-
dence. From this point, we shall focus on the RDS model.
We follow the precedent of representing the “particles” and
“holes” in the dual lattice by a spin-1/2 model: a particle is
represented by spin up ��1�; a hole becomes spin down ��0�.
From the above formalism comes the definition of the
probability-conserving operator H that controls the system’s
time dependence:

− 2H = 	
j even

�� j
+� j+1

− + � j
−� j+1

+ + �1 + �e�� j
+� j+1

+

+ �1 − �e�� j
−� j+1

− − �e�� j
−� j

+ + � j+1
− � j+1

+ � − �1 − �e��

+ 	
j odd

�� j
+� j+1

− + � j
−� j+1

+ + �1 + �o�� j
+� j+1

+

+ �1 − �o�� j
−� j+1

− − �o�� j
−� j

+ + � j+1
− � j+1

+ � − �1 − �o�� .

�8�

The operators �n
+ and �n

− are the Pauli spin raising and low-
ering operators on the nth cell:

�n
+�0n = �1n, �n

+�1n = 0, �n
−�0n = 0, and �n

−�1n = �0n.

It has been shown that the eigenvalues and eigenvectors
of H can be found if the “free fermion constraint” is

KISC
j-1 j j+1 j-1 j j+1

RDS

↑↑↑↑ ↓↓↓↓ ↓↓↓↓ ↑↑↑↑ ↑↑↑↑ ↓↓↓↓

↓↓↓↓ ↓↓↓↓ ↑↑↑↑ ↓↓↓↓ ↑↑↑↑ ↑↑↑↑
j odd or even

1 0 0 1 diffusion right

0 1 1 0 diffusion left
rate 1/2

↑↑↑↑ ↓↓↓↓ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑
j even

1 1 0 0 pair annihilation
rate (1+γγγγe)/2

↑↑↑↑ ↓↓↓↓ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑
j odd

1 1 0 0 pair annihilation
rate (1+γγγγo)/2

↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↓↓↓↓ ↑↑↑↑
j even

0 0 1 1 pair creation
rate (1-γγγγe)/2

↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↓↓↓↓ ↑↑↑↑
j odd

0 0 1 1 pair creation
rate (1-γγγγo)/2

FIG. 1. Correspondence between the two-temperature KISC and
the equivalent RDS model.
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obeyed �8�. For the RDS model, this means that the
sum of local diffusion rates is equal to the sum of
local pair creation and annihilation rates �in our case
�1 /2�+ �1 /2�= �1+�o,e /2�+ �1−�o,e /2��. This constraint as-
sures the bilinearity of the H operator, and, consequently, an
exact solution for the problem.

III. SYMMETRIES OF THE H OPERATOR

Symmetries exhibited by the H operator �Eq. �8�� affect
the form of its eigenvalues and eigenvectors and in some
cases aid in the process of determining them. In this section
we discuss these symmetries and indicate their role in the
eigenvalue analysis to follow.

Because the fundamental process described by the rate
equation, Eq. �1�, corresponds to the simultaneous flipping of
two spins in the RDS model, the H operator does not change
the “spin-parity” of a state; i.e., states with an even number
of up spins are transformed by H into states of only even
number of up spins and likewise for odd numbers of up
spins. This symmetry immediately separates the configura-
tion space into two subspaces of the same dimensionality
�2N /2� which do not interact. Thus, the 2N�2N H matrix is
reduced to two equal-sized diagonal blocks by proper order-
ing of the configuration basis states. This reduction is central
to our derivation of results for arbitrary N.

The H matrix is also invariant to a translation of the ring
of cells by an even number of cells to the right or left. Thus,
H commutes with the operator that invokes this translation
and simultaneous eigenstates of the two operators can be
found. Such eigenstates are conveniently written as sums of
the form

�Cp = 	
n=0

N/2−1

einp�4�/N��Cn , �9�

�p=0, . . . ,N /2−1�, where �C0 is a spin configuration and
�Cn is the same configuration pushed 2n cells to the right
using periodic boundary conditions �thus, if �C0= �011000,
then �C2= �100001�. The translation symmetry of the
pseudo-Hamiltonian implies that H does not mix states of the
form �Cp which have different p values. Thus, within each of
the two major sub-blocks of the H matrix �one of even spin
parity; one of odd spin parity� there are N /2 smaller sub-
blocks, each with a different value of p. This symmetry has
enabled relatively straightforward extraction of eigenvalues
and eigenstates for even N values up to N=8 �with a 256-
dimensional configuration space� �9�. It also motivates the
form of the discrete Fourier transform used in the following
section, where the case for arbitrary N is considered.

Two additional symmetries are apparent from the form of
H given above that provide further information regarding the
form of the eigenvalues and eigenvectors. The simultaneous
translation of the spin chain by a single site �cell n becomes
cell n+1� along with the interchange of values �e↔�o
leaves H invariant. If we use X to represent this transforma-
tion, it follows that X2= I. If �� is an eigenstate of H with
eigenvalue E, then

XH�� = HX�� = XEX−1X�� .

This leads to several possibilities:
�i� E is invariant under the interchange �e↔�o and either

X�� is a constant multiple of �� or X�� produces another
eigenstate of H distinct from �� but with the same eigen-
value.

�ii� E is not invariant under the interchange �e↔�o, but
instead transforms to another distinct eigenvalue of H, and
X�� becomes a corresponding eigenstate.

Explicit diagonalization for small N has suggested that the
eigenvalues are invariant under �e↔�o. The general solution
for the eigenvalues presented below shows this to be true for
all even values of N.

Another symmetry operation leaving H invariant consists
in changing the sign of both � constants and simultaneously
flipping every spin. If we use XA to represent this transfor-
mation, algebra similar to that of the prior paragraph leads to
the following:

�i� E is invariant under the change in sign of both �’s and
either XA�� is a constant multiple of �� or XA�� produces
another eigenstate of H distinct from �� but with the same
eigenvalue.

�ii� E is not invariant under the change in sign of both �’s,
but instead transforms to another distinct eigenvalue of H,
and XA�� becomes a corresponding eigenstate.

Results of explicit diagonalization for small N have also
suggested that the eigenvalues are invariant under the change
in sign of both �’s. This proves also to be true for all N.

Results from explicit diagonalization for systems with N
up to 8, enabled by utilization of symmetries of H, reveal the
following regularities, which will be seen to be features of
the general solution: �i� there are exactly two 0 eigenvalue
states, one in the even and one in the odd spin-parity sub-
space; �ii� the maximum eigenvalue in both the even and odd
spin-parity blocks has value N; �iii� each 0 eigenvalue state is
in the p=0 subspace, with eigenvectors containing symmet-
ric sums of shifted states; �iv� eigenvalues depend only upon
the single parameter ��e�o. This implies that the spectrum
can be fully deduced through knowledge of the spectrum for
the single-temperature case, Te=To.

IV. GENERAL CASE

Here we approach the problem for general N values using
standard methodology �8�. Starting with the full, two-
temperature operator in terms of spin raising and lowering
operators �Eq. �8�� we can rewrite in terms of fermionic op-
erators �cj ,cj

†� that satisfy anticommutation relations


cj,ci
†� � cjci

† + ci
†cj = 	 j,i,


cj,ci� = 
cj
†,ci

†� = 0.

This transformation, due to Jordan and Wigner �10�, is as
follows:
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� j
+ = cj

† exp�i�	
i
j

ci
†ci� ,

� j
− = cj exp�− i�	

i
j

ci
†ci� .

Straightforward application of this transformation pro-
duces the “fermionized” pseudo-Hamiltonian

H = −
1

2 	
j even

�cj
†cj+1 + cj+1

† cj + �1 + �e�cj
†cj+1

†

− �1 − �e�cjcj+1 + �e�cj
†cj + cj+1

† cj+1� − �1 − �e��

−
1

2 	
j odd

�cj
†cj+1 + cj+1

† cj + �1 + �o�cj
†cj+1

† − �1 − �o�cjcj+1

+ �o�cj
†cj + cj+1

† cj+1� − �1 − �o�� . �10�

For the even spin-parity subspace the requirement that
�N+1

+ =�1
+ and �N+1

− =�1
− implies cN+1=−c1 and cN+1

† =−c1
†. For

the odd spin-parity case, cN+1=c1 and cN+1
† =c1

†. We take ad-
vantage of the translation symmetry described in Sec. III by
defining two kinds of fermions in momentum space, one cre-
ated from even-numbered cells, the other from odd-
numbered cells. Define the following momentum-space op-
erators:

aq
† = ei�/4� 2

N
	

j even

cj
†ei�j/2�q, cj

† = e−i�/4� 2

N
	

q�Q

aq
†e−i�j/2�q,

bq
† = ei�/4� 2

N
	

j odd

cj
†ei„�j+1�/2…q,

cj
† = e−i�/4� 2

N
	

q�Q

bq
†ei„�j+1�/2…q.

We chose q values to belong to the set Q
= 
� 2�

N , �
6�
N , �

10�
N , . . . , �

�N−2��
N � for states with even spin-

parity, and Q= 
0, �
4�
N , �

8�
N , . . . , �

�N−4��
N ,�� for states

with odd spin-parity, to assure proper periodic boundary con-
ditions for each case. These definitions of Q assume that N /4
is integer valued, but the ultimate results are valid as long as
N is even.

Like the operators cj and cj
†, the momentum-space opera-

tors obey the canonical fermionic anticommutation relation-
ships:


aq,aq�� = 
aq
†,aq�

† � = 0, 
aq,aq�
† � = 	q,q�,


bq,bq�� = 
bq
†,bq�

† � = 0, 
bq,bq�
† � = 	q,q�,


aq,bq�� = 
aq
†,bq�

† � = 0, 
aq,bq�
† � = 0.

In terms of these operators, the pseudo-Hamiltonian is writ-
ten as

H = 	
q�Q

�− cos�q

2
��ei�q/2�aq

†bq + e−i�q/2�bq
†aq�

+ aq
†b−q

† i

2
��1 + �e�eiq − �1 + �o��

+ aqb−q
i

2
��1 − �e�e−iq − �1 − �o��

−
��e + �o�

2
�aq

†aq + bq
†bq� + 2 + �e + �o� . �11�

The ultimate step in the derivation is a Bogoliubov-type
similarity transform to new variables in which H takes a
diagonal form. Following the method of Lieb et al. �11� we
begin by postulating a form for H that reads

H = 	
q

��q̃qq + �q��̃q�q + const� �12�

using operators ̃q, q, �̃q, and �q which obey fermionic an-
ticommutation relations:


q,q�� = 
̃q,̃q�� = 0, 
q,̃q�� = 	q,q�,


�q,�q�� = 
�̃q, �̃q�� = 0, 
�q, �̃q�� = 	q,q�,


q,�q�� = 
̃q, �̃q�� = 0, 
q, �̃q�� = 0.

Since H is not Hermitian, ̃q�q
† and �̃q��q

†.
From the form of Eq. �12� it is straightforward to evaluate

the commutators

�q,H�− = �qq, ��q,H�− = �q��q �13�

and

�̃q,H�− = − �qq, ��̃q,H�− = − �q��q. �14�

We define the four operators in the q, �q basis in terms of
the four aq and bq operators using a 4�4 matrix D:

�
̃q

−q

�̃q

�−q

� = D�
aq

†

a−q

bq
†

b−q

� . �15�

The commutators in Eqs. �13� and �14� can be evaluated
using Eq. �15� along with
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�aq
†,H�− = �avaq

† + cos
q

2
e−Iq/2bq

† + ��b−q,

�a−q,H�− = − �ava−q + �̄bq
† − cos

q

2
e−Iq/2b−q,

�bq
†,H�− = cos

q

2
eIq/2aq

† − �̄�a−q + �avbq
†,

�b−q,H�− = − �aq
† − cos

q

2
eIq/2a−q − �avb−q, �16�

with definitions

�av �
�e + �o

2
, �d �

�e − �o

2
,

� � eiq/2�− �1 + �av�sin
q

2
+ i�d cos

q

2
� ,

�� � e−iq/2��1 − �av�sin
q

2
− i�d cos

q

2
� .

�̄ represents � as defined above but with q replaced by −q,
and likewise for ��.

The commutator equation �̃q ,H�−=−�q̃q, using Eqs.
�15� and �16�, transforms into a linear equation in the inde-
pendent operators aq

†, b−q, bq
†, and a−q. Coefficients of each of

these four operators on the right-hand side must equal the
corresponding coefficient on the left yielding a linear set of
equations for the elements of the top row D1 of the matrix D
which can be expressed by the matrix equation
MD1=−�qD1 where

M = �
�av 0 cos

q

2
eIq/2 − �

0 − �av − �� − cos
q

2
eIq/2

cos
q

2
e−Iq/2 �̄ �av 0

�� − cos
q

2
e−Iq/2 0 − �av

� .

�17�

Similarly, the commutator equation ��̃q ,H�−=−�q��̃q pro-
duces the matrix equation MD3=−�q�D3 involving the third
row of the matrix D; �−q ,H�−=�−q−q produces the matrix
equation MD2=�−qD2 involving the second row of D;
and ��−q ,H�−=−�−q� �−q produces the matrix equation
MD4=�−q� D4 involving the fourth row of the matrix D. For a
particular value of q, M thus has two positive eigenvalues
corresponding to the energy of excitations generated by ̃−q

and �̃−q, and two redundant negative eigenvalues with abso-

lute values corresponding to energies for ̃q and �̃q excita-
tions.

Straightforward calculations produce eigenvalues
for M of ��1�cosq

2
��e�o�. We chose to identify

�q=1+cosq
2
��e�o and �q�=1−cosq

2
��e�o in order to deduce

the exact spectrum for the model. Corresponding eigenvec-
tors can be extracted as well but their algebraic expressions
are too complicated to be useful in analytic form.

There is a unique even spin-parity vacuum state �0e de-
fined by the relations

q�0e = 0, �q�0e = 0

for

q � ��
2�

N
, �

6�

N
, �

10�

N
, . . . , �

�N − 2��
N

� .

Other even spin-parity states are formed by an even number

of excitations of the ̃q or �̃q type: each excitation of the
former type carries energy �q, and each of the latter type
carries �q�. Since these excitations are fermionic, there can-
not be two ̃q excitations with the same q nor can there be

two �̃q excitations with the same q. The highest energy state

has N /2 distinct ̃q excitations and N /2 distinct �̃q excita-
tions and carries total energy N.

The odd spin-parity sector of the spectrum also has a
unique vacuum:

q�0o = 0, �q�0o = 0

for

q � �0, �
4�

N
, �

8�

N
, . . . , �

�N − 4��
N

,�� .

Other odd-parity states are formed by an even number of

excitations of the ̃q or �̃q type with q with values from the
list appropriate to odd spin-parity. The highest energy odd
spin-parity state has N /2 distinct ̃q excitations and N /2 dis-

tinct �̃q excitations and carries total energy N.

V. CONSEQUENCES AND CONCLUSIONS

It is surprising that a relatively simple set of eigenvalues
emerges from the great algebraic complexity of the solution
for arbitrary N of the two-temperature model considered
herein. In contrast, the eigenvectors exhibited in �9� for
N=4 show that even in this relatively simple case, the state
vectors are algebraically difficult. In particular, the even and
odd E=0 eigenstates that correspond to steady-state solutions
are not easily characterized. In general the eigenstates de-
pend separately upon the values of �e and �o. While the
methodology employed in the previous section can, in prin-
ciple, allow the extraction of the eigenvectors of H, the al-
gebraic complexity of the eigenvectors of the matrix M sug-
gests that such a straightforward exposition of them is not
likely to be illuminating. A full numerical exploration of the
eigenstates that would enable numerical evaluation of par-
ticle densities and correlation functions is beyond the scope
of the current work. General relationships for these have
been previously exhibited by Mobilia et al. �4�.

EXACT ENERGY SPECTRUM OF A TWO-TEMPERATURE… PHYSICAL REVIEW E 80, 061109 �2009�

061109-5



The fact that the eigenvalues depend upon the single pa-
rameter ��e�o allows some simple deductions regarding spe-
cial cases of the two-temperature model. If one of the tem-
perature baths has infinite temperature �e.g., �e=0�, the
eigenvalues are those of the case of a single-temperature
model with infinite temperature. These eigenvalues are iden-
tical to those of the Glauber model �1�, but the eigenvectors
are of greater complexity. If one of the temperature baths has
T=0 �e.g., �e=1�, the energy spectrum becomes the same as
for the one-temperature case for a temperature related to but
not equal to that of the other bath. In the RDS language, this
case corresponds to a system with pair creation prohibited,
and pair annihilation at a rate of 1 for the even sites. In
general, for every case with distinct temperatures Te and To,
there is a single temperature that will yield the same energy
eigenvalues. The spectrum of energies for the single-
temperature case follows from the work of Grynberg et al.
�8� �for the special case h=h�= 1

2 , �= �1+�� /2, and
��= �1−�� /2� with �=tanh�2 /kBT�.

A few general observations about the spectrum in the ther-
modynamic limit, N→�, are possible. Paralleling an obser-
vation of Grynberg et al. �8� for the single-temperature case,
as long as ��e�o
1 �at least one temperature bath is above
absolute zero�, there is a gap between the ground state and
the next-highest energy level of 2�1−��e�o�. This assures
that states other than the steady state decay exponentially in
time. The spectrum of remaining states consist of bands of
energy levels centering on states with E=4,6 ,8 , . . .. The
widths of these bands grow with E, while the spacing be-
tween adjacent states remains constant at 2. As a result, re-
gardless of how small the parameter ��e�o is, the bands will
overlap for high energies. These observations are separately
true for the even spin-parity and odd spin-parity segments of
the energy spectrum.

Because H does not cause transitions between states of
different spin-parity, the time evolution of any initial state
can be broken into two independent segments. Any initial
configuration of spin states can be broken into a piece with
even spin-parity with probability Pe and one of odd spin-
parity with probability Po, with Pe+ Po=1. The even spin-
parity segment decays toward the steady state �0e maintain-
ing constant probability Pe; likewise, the odd segment
decays toward �0o maintaining constant probability Po. The
separate even and odd spin-parity energies control the rate of
decay of the non-steady-state components for each segment.

Symmetries discussed in Sec. II enable a few additional
comments about the general form of the eigenvectors. Be-
cause we know the eigenvalues to be invariant under the
interchange �e↔�o it follows that displacement of the ring
by a single site �effectively a permutation of basis states�
along with an interchange of values of �e and �o should
transform any eigenvector into a constant multiple of itself or
into a different eigenvector with the same eigenvalue. Since
the ground state �E=0� and the maximum energy state

�E=N� for the even spin-parity sector and for the odd spin-
parity sector are nondegenerate, each should be invariant
within a constant under this transformation.

The eigenvalues are also invariant under the simultaneous
change in sign of �e and �o. This implies that a simultaneous
flip of all spins �another basis state permutation� accompa-
nied by a sign change in both �s should transform an eigen-
vector into a constant multiple of itself or into another eigen-
vector with the same E. The nondegenerate eigenstates in
each spin-parity sector should transform into constant mul-
tiples of themselves under this symmetry transformation.

Mobilia et al. �4� have examined the behavior of this
model in the case where the � ’ s have opposite signs.
Although the concept of negative temperatures does not
make physical sense for the KISC model, in the context of
the RDS system it corresponds to a grid where the pair cre-
ation rate exceeds the pair annihilation rate on one sublattice,
and the opposite is true for the other sublattice. The eigen-
values for this case will have positive real parts
�Re�E�=0,2 ,4 , . . . ,N� corresponding to exponential damp-
ing in time, and imaginary parts proportional to ���e�o�
producing oscillatory behavior. This result is consistent with
the predictions presented in Mobilia et al. �4�, for example,
that under these conditions the density of particles ap-
proaches its equilibrium value via a term proportional to
exp�−2t�sin�2���e�o�t+	�. Our spectrum results show such a
behavior for the highest frequency oscillation associated with
the most slowly decaying component of the state function
evolving from a general initial condition.

In ongoing work we seek a compact expression for the
steady state of these models. Given the relationship between
spin systems and reaction-diffusion systems, it will be inter-
esting to investigate the effect of various initial conditions
and open boundary conditions on the dynamics of the sys-
tem. From an experimental point of view, open boundary
conditions for RDS systems would be important in the study
of chemical reactions that include creation and annihilation
processes and dimer deposition. Although particle densities
and correlation functions can be calculated fairly straightfor-
wardly in the thermodynamic limit, finite-size effects may
also be worth investigating.

We can also imagine other extensions of the models pre-
sented. For example, we are interested in considering an
RDS model with nonuniform diffusion rates for the odd and
even sites and different creation and annihilation rates. This
can also shed some light on the general problem of dimer-
ized spin chains �12�.
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